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Do characters need to be intelligent? 
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Do we need agents for more serious games? 

24 May 2012 4 



Universiteit Utrecht 

Agent features (claimed) 

1. Goal directed 
• Agents find ways to reach a goal rather than execute a fixed 

procedure 
• In case of failure of a plan they can replan 

2. Reactive behavior 
• Agents react to events in their environment (while keeping 

their goal in mind) 
3. Social abilities 

• Agents know how to communicate in a high and flexible way 
(ACL is based on speech act theory) 
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GOAP vs. Agents 
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GOAP vs. Agents (failing actions) 
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fail 
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Goal tree vs. rule based planning 

• Goal trees work well to describe default possibilities 
• Trees get really messy when incorporating 

unexpected events and/or failures 
• Rules are more suited to cope with these situations 
• Divide rules in normal operation rules (default plans) 

and exception handling rules  
 

• Flexibility comes at the cost of extra specification of 
general exception handling knowledge (based on 
domain) 
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Agents for Games? 

• Assume that we want to use agents for creating 
“intelligent” characters in games. 
 

• Can we use Agent Technology to implement those 
agents in the games? 
 

• I.e. can we make use of all the tools, techniques and 
platforms that are developed to implement intelligent 
agents for the incorporation of agents in games?  

• If so, what do we need to do to couple the agent and 
game technologies? 
 

• Or do we have to start from scratch and develop 
everything again specially for the game environment? 
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Game Engines and Agents 
Client side approach 
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Example: Pogamut 
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Multi Agent Systems 
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Game Engines and Agents 
Server side approach 
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Example (THOMAS, Aranda et.al.) 

24 May 2012 14 



dignum@cs.uu.nl 
jwestra@cs.uu.nl 

G
am

es
 a

nd
 A

ge
nt

s 
Games plus Agents 

GE, 23.01.08 

Agent 
Agent  
Platform 

Agent 

Agent 

Agent 

Communication 
Manager 
User Interface 
 

Physics Engine 

Animation 
Engine 

Graphics Engine 

Game 
logic/loop 

Sound Engine 

Input module GE Environment MAS 

Control? 



Universiteit Utrecht 
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Intelligent Virtual Agent Design Issues 

• IVA-design is distributed 
• Physical-layer + Cognitive-layer 
• Physical aspects vs. Cognitive aspects 

• Cannot design these layers independently 
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Middleware Approach 

 
• Bridge conceptual gap using a middleware 

• Design problems not responsibility of GE or MAS 
 

• Middleware to provide technical facilities: 
• Translate data representations 
• Perception/action/communication mechanisms 

 
• Don’t restrict designers in their IVA design, but offer technical 

solutions to help them realizing their design 
 

• Performance determined by how the facilities are used 
 

• Middleware itself is not part of the IVA design! 
 

• CIGA Framework developed to follow this design approach 
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CIGA Framework 

 
• Physical Interface: Connect to simulation environments 

• E.g. CORE, (UT, CryEngine, Ogre, Delta3D, etc) 
• Cognitive Interface: Connect to agent systems 

• E.g. Jadex, 2APL, BT-based MAS, etc 
• Connection Mechanism: Internal message-passing system 

• Introduced for flexibility and portability 
• E.g. TCP/IP, Java/C++ bridge 

• Ontology Model: contract between GE and MAS 
• E.g. Specify ontology using: Protégé, custom ontology editors 
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Connecting the Game engine 

• Physical Interface integrated into game engine as 
external component included in the update loop 
 

• Motivation: become less dependent on the (limited) 
features provided by a particular game engine. 
 

• Offers: 
• Monitoring entity creation 
• Time synchronization 
• Translation world state data to ontological sensory information 
• Perceptual attention: full control (what and when/how often) 
• Behavior realization: framework to implement actions 



Universiteit Utrecht 

Connecting the MAS 

• Cognitive Interface: integrated into MAS as event-
based component (no synchronized update) 
 

• Motivation: Provide simple interface for easy 
integration of wide range of MASs.  
 

• Offers: 
• Notify MAS about possible entities to embody 
• Agent’s sense-act interface where data are instances of 

ontology concepts 
• Access to ontology model from within the MAS 
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CIGA Platform + Tools 

Middleware 
Configuration 

Run-time Platform GUI 

Ontology-editor 
import scripts 

Code Generation 
Tools 

• Monitor agents 
• Events, actions 
• Subscriptions, logs 

• Test actions  
• Profile agents 
• Inspect ontology model 

Features 
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Aspects that make agents work in games 

1.Ontology  
• reason on the right abstraction level 

2.Perception 
• Get enough and not to much 

information 
3.Action 

• Perform physical actions and react 
adequately on failure 

4. Communication 
• Multi-modal communication 
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Data representation: Ontology 

• Problem: Different data concepts in GE and MAS 
• World state vs. strategic abstraction level 

• Solution: Translation-step during agent sensing on GE-
side 

• Design issue: Suitable abstraction level (not too low, not 
too high) 

Conceptual Aspects Technical Aspects 

- interpretability 
- efficiency 
- communication-costs 
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Ontology Model 

• Contract on concepts communicated between GE and 
MAS 
 

• Designers specify level of abstraction for sensory 
information and actions based on requirements for 
specific domain 
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Ontology: Object Perception Model 
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• The Object Perception Model defines the ontology into 
which both the AT and the GE have to map. 

Example: 
<class name=” Character “> 
  <property>    <name>ID</name> 
      <type>number</type> 
  </property> 
  <property>    <name>Distance</name> 
      <type>meters</type> 
  </property> 
  <property>    <name>Direction</name> 
      <type>Orientation</type> 
  </property> 
  <property>    <name>Tool</name> 
      <type>Tool</type> 
  </property> 
</class> 
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Ontology: Interaction model  
<Agent name=”Door-opener”> 
  <general>   <property> 
      <name>HoldsOpeningTool</name> <type>Tools</type> 
    </property>   
<\general> 
  
  <physical>    <property> 
      <name>height</name> <type>meters</type> 
    </property> 
  </physical> 
  
  <sensor name=”eyes”>  <property> 
    <name>Range</name> <type>meters</type> 
    </property>    
  </sensor> 
  
  <capability name=”Open door”> <property> 
      <name>target</name>  <type>Door</type> 
    </property> 
  </capability > 
</Agent> 
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Ontology: Interaction model 

 
 

• PRECONDITION “OpenDoor”: 
  Poss(OpenDoor(Agent,Door)) ⇔  
 Closed(Door) ∧ Distance(Agent,Door)<1 ∧ 

Holds(Agent,Axe) 
 

• POSTCONDITION “OpenDoor”:  
 Done(OpenDoor(Agent,Door)) ⇒  
 Open(Door) ∧ Poss(Backdraft(Door)) 
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Control over Perception 

• Problem: Perceptual attention for agents 
• Cannot attend to all information from the environment 
• Filtering cannot be performed by GE or MAS alone 

• Solution: Subscription-based filtering mechanism 
• Agent controls sensing: what and when to sense 

• Design issue: Balance flow of sensory information (not 
too much, not too little) 

Conceptual Aspects Technical Aspects 

- goal-directed/ 
  stimulus-driven  

- performance MAS 
- performance GE 
- communication-costs 
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Perception framework 
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Implementation 
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Subscription rules 
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Example: 
 
Poss(Perceive(Character,ID)) ⇔  
(Dist(Character,ID) <150 ∧LineofSight(Character,ID) ∧ 
Direction(Character,ID,towards)  
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Perception scenario 
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Control over Action Realization 

• Problem: Different nature of actions in typical GE and 
MAS  environments 

• Modality + Duration 
• Solution: Action mechanism for body control + 

feedback channel 
• Dispatch, abort, feedback about status 
• Define actions at functional level  

• Design issue: Suitable abstraction-level (not too low, 
not too high) 
Conceptual Aspects Technical Aspects 

- control 
- individuality 

- efficiency 
- communication-costs 
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Communication 

• Problem: Different communication in MAS and GE 
• Method: communicative intent (direct) vs. verbal and nonverbal 

communicative behavior (indirect) 
• Communication channel: reliable vs. unreliable 

• Solution: Communication mechanism. 
• Allow MAS-communication through simulation environment 

• Design issue: Choose method: behavior or intent 

Conceptual Aspects Technical Aspects 

- interpretability - complexity 
- efficiency 
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Communication is multi-modal 
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Multi-modal communication 
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Example rules in modules: 

 
 

• PRECONDITION:  
 Poss(Send(Propose(Action,Agent))) ⇔ Dist(Agent)<5 

 
• POSTCONDITION:  
 Done(Send(Propose(Action,Agent))) ∧ Dist(Agent’)<5 

⇒ Poss(Receive(Propose(Action,Agent))) 
 
 
Can be used to describe physical constraints on 

communication and side effects of communication 
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Communicating agents 
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Designing games with agents: issues 

• How intelligent can an agent behave 
(boundaries): 
• Story line 
• Game rules (including communication) 
• Environment (UI and look and feel) 
• Roles 
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Design games using OperA 

• OperA specifies the boundaries of the behavior of the 
roles in the game 

• OperA indicates landmarks that should be reached 
that can be used to specify the learning goals 

• Agents can fill in the roles in different ways: 
• Scripted character 
• BDI agent 
• … 
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OperA example: storyline 
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OperA example: Scene 
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Interaction Scene: save victim 
Roles Leading_firefighter(1), door_opener(1), fire_extinguisher(1), ambulance(2), 

victim(3), 
Trigger   ∃H∈ people, ∃T∈ victim       perceive(H,T) 
Results r1 = ∀ T ∈ victim, safe(T) 
Interaction 
Patterns 

PATTERN(r1) =  
 { DONE(T, at(H,T)) BEFORE DONE(B, secure_area), 
   DONE(B, secure_area) BEFORE DeadlineH), 
     DONE(M, stabilise(H) BEFORE Dead(H)) 
     DONE(T, transport_to_ambulance(H)) 
  } 

Norms PERMITTED(E, blow_obstacles) 
OBLIGED(M,stabilise(T) BEFORE Dead(T)) 
OBLIGED (B, extinguish_fire BEFORE transport(H)) 
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OperA example: Roles in a game 
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Role: leading firefighter 

Objectives Fire_under_control, victims_save 

Sub-
objectives 

{get_to_disaster_location, situation_assessment, plan_of_attack, extinguish_fire, 
rescue_victims} 

Rights Command_team_members, order_ambulance, get_experts 

Norms OBLIGED inform(headquarters,plan_of_attack) BEFORE NOW+10 
IF DO safe(victim) or DO extinguish(fire) THEN PERMITTED damage(building) 
OBLIGED ensure_safety(team) 
OBLIGED safe(victims) BEFORE extinguish(fire) 
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Conclusions 
• Intelligence by design only 
• Several stances needed to cover the connection 

between games and agents 
• Need for a middleware between AT and GE 
• CIGA is a principled approach that seems 

promising 
• Infrastructure “easy” 
• Conceptual connection is domain dependent 
• Design using an OperA like methodology seems 

promising 
 

• What should be done by the agent and what by the 
game engine? 

• Programming agents? 
• What should be intelligent? (pathplanning vs. 

conversations) 
• What agent technology/architecture to use? 

• Existing agent technology is not sufficient or very ad hoc 
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Agent architectures 
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QUESTIONS? 
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