
Universiteit Utrecht

Agents for Serious gaming:
Challenges and Opportunities

Frank Dignum
Utrecht University

Universiteit Utrecht 24 May 2012 2

Contents

• Agents for games?
• Connecting agent technology and

game technology
• Challenges
• Infrastructural stance
• Conceptual stance
• Design stance
• CIGA: middleware solution
• Conclusions

Universiteit Utrecht 24 May 2012 3

Do characters need to be intelligent?

Universiteit Utrecht

Do we need agents for more serious games?

24 May 2012 4

Universiteit Utrecht

Agent features (claimed)

1. Goal directed
• Agents find ways to reach a goal rather than execute a fixed

procedure
• In case of failure of a plan they can replan

2. Reactive behavior
• Agents react to events in their environment (while keeping

their goal in mind)
3. Social abilities

• Agents know how to communicate in a high and flexible way
(ACL is based on speech act theory)

24 May 2012 5

Universiteit Utrecht

GOAP vs. Agents

24 May 2012 6

Universiteit Utrecht

GOAP vs. Agents (failing actions)

24 May 2012 7

fail

Universiteit Utrecht

Goal tree vs. rule based planning

• Goal trees work well to describe default possibilities
• Trees get really messy when incorporating

unexpected events and/or failures
• Rules are more suited to cope with these situations
• Divide rules in normal operation rules (default plans)

and exception handling rules

• Flexibility comes at the cost of extra specification of
general exception handling knowledge (based on
domain)

24 May 2012 8

Universiteit Utrecht

Agents for Games?

• Assume that we want to use agents for creating
“intelligent” characters in games.

• Can we use Agent Technology to implement those
agents in the games?

• I.e. can we make use of all the tools, techniques and
platforms that are developed to implement intelligent
agents for the incorporation of agents in games?

• If so, what do we need to do to couple the agent and
game technologies?

• Or do we have to start from scratch and develop
everything again specially for the game environment?

24 May 2012 9

Universiteit Utrecht

Game Engines and Agents
Client side approach

Physics Engine

Animation Engine

Graphics Engine

Input
module

Game
logic/loop

Sound Engine

Agents

Universiteit Utrecht

Example: Pogamut

24 May 2012 11

Universiteit Utrecht

Multi Agent Systems

Environment

Environment

Environment

Agent
Agent
Platform

Agent

Agent

Agent

Communication
Manager
User Interface

Environment

Universiteit Utrecht

Game Engines and Agents
Server side approach

24 May 2012 13

Agentified
Character

Agentified
Character

Agentified
Character

Physics Engine

Animation Engine

Graphics Engine

Game
Engine

Sound Engine

Universiteit Utrecht

Example (THOMAS, Aranda et.al.)

24 May 2012 14

dignum@cs.uu.nl
jwestra@cs.uu.nl

G
am

es
 a

nd
 A

ge
nt

s
Games plus Agents

GE, 23.01.08

Agent
Agent
Platform

Agent

Agent

Agent

Communication
Manager
User Interface

Physics Engine

Animation
Engine

Graphics Engine

Game
logic/loop

Sound Engine

Input module GE Environment MAS

Control?

Universiteit Utrecht

Ontological
mapping

Dynamic
Event
subscription

Communication

Games plus Agents

GE, 23.01.08

Agent
Agent
Platform

Agent

Agent

Agent

Communication
Manager
User Interface

Physics Engine

Animation
Engine

Graphics
Engine

Game
logic/loop

Sound Engine Event
queues

CIGA

Universiteit Utrecht

Intelligent Virtual Agent Design Issues

• IVA-design is distributed
• Physical-layer + Cognitive-layer
• Physical aspects vs. Cognitive aspects

• Cannot design these layers independently

Universiteit Utrecht

Middleware Approach

• Bridge conceptual gap using a middleware

• Design problems not responsibility of GE or MAS

• Middleware to provide technical facilities:
• Translate data representations
• Perception/action/communication mechanisms

• Don’t restrict designers in their IVA design, but offer technical

solutions to help them realizing their design

• Performance determined by how the facilities are used

• Middleware itself is not part of the IVA design!

• CIGA Framework developed to follow this design approach

Universiteit Utrecht

CIGA Framework

• Physical Interface: Connect to simulation environments

• E.g. CORE, (UT, CryEngine, Ogre, Delta3D, etc)
• Cognitive Interface: Connect to agent systems

• E.g. Jadex, 2APL, BT-based MAS, etc
• Connection Mechanism: Internal message-passing system

• Introduced for flexibility and portability
• E.g. TCP/IP, Java/C++ bridge

• Ontology Model: contract between GE and MAS
• E.g. Specify ontology using: Protégé, custom ontology editors

Universiteit Utrecht

Connecting the Game engine

• Physical Interface integrated into game engine as
external component included in the update loop

• Motivation: become less dependent on the (limited)
features provided by a particular game engine.

• Offers:
• Monitoring entity creation
• Time synchronization
• Translation world state data to ontological sensory information
• Perceptual attention: full control (what and when/how often)
• Behavior realization: framework to implement actions

Universiteit Utrecht

Connecting the MAS

• Cognitive Interface: integrated into MAS as event-
based component (no synchronized update)

• Motivation: Provide simple interface for easy
integration of wide range of MASs.

• Offers:
• Notify MAS about possible entities to embody
• Agent’s sense-act interface where data are instances of

ontology concepts
• Access to ontology model from within the MAS

Universiteit Utrecht

CIGA Platform + Tools

Middleware
Configuration

Run-time Platform GUI

Ontology-editor
import scripts

Code Generation
Tools

• Monitor agents
• Events, actions
• Subscriptions, logs

• Test actions
• Profile agents
• Inspect ontology model

Features

Universiteit Utrecht

Aspects that make agents work in games

1.Ontology
• reason on the right abstraction level

2.Perception
• Get enough and not to much

information
3.Action

• Perform physical actions and react
adequately on failure

4. Communication
• Multi-modal communication

24 May 2012 23

Universiteit Utrecht

Data representation: Ontology

• Problem: Different data concepts in GE and MAS
• World state vs. strategic abstraction level

• Solution: Translation-step during agent sensing on GE-
side

• Design issue: Suitable abstraction level (not too low, not
too high)

Conceptual Aspects Technical Aspects

- interpretability
- efficiency
- communication-costs

Universiteit Utrecht

Ontology Model

• Contract on concepts communicated between GE and
MAS

• Designers specify level of abstraction for sensory
information and actions based on requirements for
specific domain

Universiteit Utrecht

Ontology: Object Perception Model

24 May 2012 26

• The Object Perception Model defines the ontology into
which both the AT and the GE have to map.

Example:
<class name=” Character “>
 <property> <name>ID</name>
 <type>number</type>
 </property>
 <property> <name>Distance</name>
 <type>meters</type>
 </property>
 <property> <name>Direction</name>
 <type>Orientation</type>
 </property>
 <property> <name>Tool</name>
 <type>Tool</type>
 </property>
</class>

Universiteit Utrecht

Ontology: Interaction model
<Agent name=”Door-opener”>
 <general> <property>
 <name>HoldsOpeningTool</name> <type>Tools</type>
 </property>
<\general>

 <physical> <property>
 <name>height</name> <type>meters</type>
 </property>
 </physical>

 <sensor name=”eyes”> <property>
 <name>Range</name> <type>meters</type>
 </property>
 </sensor>

 <capability name=”Open door”> <property>
 <name>target</name> <type>Door</type>
 </property>
 </capability >
</Agent>

24 May 2012 27

Universiteit Utrecht

Ontology: Interaction model

• PRECONDITION “OpenDoor”:
 Poss(OpenDoor(Agent,Door)) ⇔
 Closed(Door) ∧ Distance(Agent,Door)<1 ∧

Holds(Agent,Axe)

• POSTCONDITION “OpenDoor”:
 Done(OpenDoor(Agent,Door)) ⇒
 Open(Door) ∧ Poss(Backdraft(Door))

24 May 2012 28

Universiteit Utrecht

Control over Perception

• Problem: Perceptual attention for agents
• Cannot attend to all information from the environment
• Filtering cannot be performed by GE or MAS alone

• Solution: Subscription-based filtering mechanism
• Agent controls sensing: what and when to sense

• Design issue: Balance flow of sensory information (not
too much, not too little)

Conceptual Aspects Technical Aspects

- goal-directed/
 stimulus-driven

- performance MAS
- performance GE
- communication-costs

Universiteit Utrecht

Perception framework

Universiteit Utrecht

Implementation

Universiteit Utrecht

Subscription rules

24 May 2012 32

Example:

Poss(Perceive(Character,ID)) ⇔
(Dist(Character,ID) <150 ∧LineofSight(Character,ID) ∧
Direction(Character,ID,towards)

Universiteit Utrecht

Perception scenario

Universiteit Utrecht

Control over Action Realization

• Problem: Different nature of actions in typical GE and
MAS environments

• Modality + Duration
• Solution: Action mechanism for body control +

feedback channel
• Dispatch, abort, feedback about status
• Define actions at functional level

• Design issue: Suitable abstraction-level (not too low,
not too high)
Conceptual Aspects Technical Aspects

- control
- individuality

- efficiency
- communication-costs

Universiteit Utrecht

Communication

• Problem: Different communication in MAS and GE
• Method: communicative intent (direct) vs. verbal and nonverbal

communicative behavior (indirect)
• Communication channel: reliable vs. unreliable

• Solution: Communication mechanism.
• Allow MAS-communication through simulation environment

• Design issue: Choose method: behavior or intent

Conceptual Aspects Technical Aspects

- interpretability - complexity
- efficiency

Universiteit Utrecht

Communication is multi-modal

24 May 2012 36

Universiteit Utrecht

Multi-modal communication

Universiteit Utrecht

Example rules in modules:

• PRECONDITION:
 Poss(Send(Propose(Action,Agent))) ⇔ Dist(Agent)<5

• POSTCONDITION:
 Done(Send(Propose(Action,Agent))) ∧ Dist(Agent’)<5

⇒ Poss(Receive(Propose(Action,Agent)))

Can be used to describe physical constraints on

communication and side effects of communication

24 May 2012 38

Universiteit Utrecht

Communicating agents

Universiteit Utrecht

Designing games with agents: issues

• How intelligent can an agent behave
(boundaries):
• Story line
• Game rules (including communication)
• Environment (UI and look and feel)
• Roles

24 May 2012 40

Universiteit Utrecht

Design games using OperA

• OperA specifies the boundaries of the behavior of the
roles in the game

• OperA indicates landmarks that should be reached
that can be used to specify the learning goals

• Agents can fill in the roles in different ways:
• Scripted character
• BDI agent
• …

24 May 2012 41

Universiteit Utrecht

OperA example: storyline

24 May 2012 42

Emergency
call

Create
team

Ambulance

Extinguish
fire

Get to
location

Evaluate
situation start

end

Save
victim

Expert

Universiteit Utrecht

OperA example: Scene

24 May 2012 43

Interaction Scene: save victim
Roles Leading_firefighter(1), door_opener(1), fire_extinguisher(1), ambulance(2),

victim(3),
Trigger ∃H∈ people, ∃T∈ victim perceive(H,T)
Results r1 = ∀ T ∈ victim, safe(T)
Interaction
Patterns

PATTERN(r1) =
 { DONE(T, at(H,T)) BEFORE DONE(B, secure_area),
 DONE(B, secure_area) BEFORE DeadlineH),
 DONE(M, stabilise(H) BEFORE Dead(H))
 DONE(T, transport_to_ambulance(H))
 }

Norms PERMITTED(E, blow_obstacles)
OBLIGED(M,stabilise(T) BEFORE Dead(T))
OBLIGED (B, extinguish_fire BEFORE transport(H))

Universiteit Utrecht

OperA example: Roles in a game

24 May 2012 44

Role: leading firefighter

Objectives Fire_under_control, victims_save

Sub-
objectives

{get_to_disaster_location, situation_assessment, plan_of_attack, extinguish_fire,
rescue_victims}

Rights Command_team_members, order_ambulance, get_experts

Norms OBLIGED inform(headquarters,plan_of_attack) BEFORE NOW+10
IF DO safe(victim) or DO extinguish(fire) THEN PERMITTED damage(building)
OBLIGED ensure_safety(team)
OBLIGED safe(victims) BEFORE extinguish(fire)

Universiteit Utrecht 24 May 2012 45

Conclusions
• Intelligence by design only
• Several stances needed to cover the connection

between games and agents
• Need for a middleware between AT and GE
• CIGA is a principled approach that seems

promising
• Infrastructure “easy”
• Conceptual connection is domain dependent
• Design using an OperA like methodology seems

promising

• What should be done by the agent and what by the
game engine?

• Programming agents?
• What should be intelligent? (pathplanning vs.

conversations)
• What agent technology/architecture to use?

• Existing agent technology is not sufficient or very ad hoc

Universiteit Utrecht

Agent architectures

BDI
Long Term Memory Blackboard

(Working Memory)

Physiology Reservoir

Stress Reservoir

Coping style

Perceived Object
List

Chosen action

Stress PMFs

Decision PMFs

Perception PMFs

Doctrine Ruleset

Standards Hierarchy

Preference Hierarchy

Agent Memory

Stress Thresholds

CAN_ARREST

HAS_GUN

AMERICAN

Goal Hierarchy

If (CROWDSIZE / ALLYCOUNT > 3) {

 Action.ATTACK = FAILS_DOCTRINE;

 Action.DISMISS = SATISFIES_DOCTRINE;

}

Decay Parameters

PMF Module Scheduler

Memory
Relationships
Physical Props

Need Reservoir
Values

Calculated Utilities

Emotion PMFs
Calculated Emotions

Generic PMFserv Agent

Universiteit Utrecht

QUESTIONS?

24 May 2012 50

	Agents for Serious gaming:�Challenges and Opportunities
	Contents
	Do characters need to be intelligent?
	Do we need agents for more serious games?
	Agent features (claimed)
	GOAP vs. Agents
	GOAP vs. Agents (failing actions)
	Goal tree vs. rule based planning
	Agents for Games?
	Game Engines and Agents�Client side approach
	Example: Pogamut
	Multi Agent Systems
	Game Engines and Agents�Server side approach
	Example (THOMAS, Aranda et.al.)
	Games plus Agents
	Games plus Agents
	Intelligent Virtual Agent Design Issues
	Middleware Approach
	CIGA Framework
	Connecting the Game engine
	Connecting the MAS
	CIGA Platform + Tools
	Aspects that make agents work in games
	Data representation: Ontology
	Ontology Model
	Ontology: Object Perception Model
	Ontology: Interaction model
	Ontology: Interaction model
	Control over Perception
	Perception framework
	Implementation
	Subscription rules�
	Perception scenario
	Control over Action Realization
	Communication
	Communication is multi-modal
	Multi-modal communication
	Example rules in modules:
	Communicating agents
	Designing games with agents: issues
	Design games using OperA
	OperA example: storyline
	OperA example: Scene
	OperA example: Roles in a game
	Conclusions
	Agent architectures
	Questions?

