

Swarm-bots

Marco Dorigo

FNRS Research Director IRIDIA Université Libre de Bruxelles

Swarm-bots

- The swarm-bot is an experiment in swarm robotics
- Swarm robotics is the application of swarm intelligence principles to the control of groups of robots

What is swarm intelligence?

- Swarm intelligence is an artificial intelligence technique based around the study of collective behavior in decentralized, self-organized systems
- Swarm intelligent systems are typically made up of a population of simple agents interacting locally with one another and with their environment
- Although there is normally no centralized control structure dictating how individual agents should behave, local interactions between such agents often lead to the emergence of global behavior
- Examples of systems like this can be found in nature, including ant colonies, bird flocking, animal herding, and fish schooling

From "Swarm Intelligence" entries in Wikipedia and Scholarpedia

IRIDIA

Swarm intelligence principles

- Simple agents (wrt the task to be solved)
- Redundant agents
- Local sensing
- Local communication
- Decentralized control
- Complexity arises from interactions and cooperation

Technological motivations

Cost:

Simple agents are cheaper to build and maintain than complex ones

Fault tolerance:

Simple agents are less prone to failure When an agent fails another one can take over No single point-of-failure

Parallelism:

Different agents can perform different task at the same time

Scalability:

Add more agents, get more work done

What is a swarm-bot?

- A "swarm-bot" is an artifact composed of a number of simpler robots, called "s-bots", capable of self-assembling and self-organizing to adapt to its environment
- S-bots can connect to and disconnect from each other to self-assemble and form structures when needed, and disband at will

Swarm-bot experiment: The goal

Show that a swarm of robots can be controlled using
 swarm intelligence principles
 so that the robots physically cooperate to solve problems that are beyond the capacities of the single robots

What should a swarm-bot be able to do?

Demonstrate both logical and physical cooperation

For example:

8

- Move in formation to overcome obstacles that a single s-bot cannot overcome alone
- Retrieve an item that is too heavy for a single s-bot

Swarm-bots Our scenario

Find object and aggregate around it

Pull object and search for goal

Change shape and move in a coordinate way avoiding obstacles

12

Swarm-bots

Controllers development: methodology

- Develop a simulation model of the hardware
- Define the basic behaviors to be developed
- Use either

hand-coded behavior-based architectures or

artificial evolution of neural networks

- to synthesize the basic behaviors in simulation that can be ported to the real *s-bots*
- Download and test the obtained controllers on the real s-bots

Swarm-bots

Definition of behaviors for the scenario

- Coordinated motion
 - moving around
 - passing over a gap
 - avoiding holes
- Self-assembly
- Cooperative transport
- Goal search and path formation

Swarm-bots Coordinated motion

- Four s-bots are connected in a swarm-bot formation
- Their chassis are randomly oriented
- The *s-bots* should be able to
 - collectively choose a direction of motion
 - move as far as possible

16

Simple perceptrons are evolved as controllers

Swarm-bots: Coordinated motion The traction sensor

- Connected s-bots apply pulling/pushing forces to each other when moving
- Each s-bot can measure a traction force acting on its turret/chassis connection
- The traction force indicates the mismatch between
 - the average direction of motion of the group
 - the desired direction of motion of the single s-bot

traction sensor

Swarm-bots: Coordinated motion

The evolutionary algorithm

- Binary encoded genotype
 - 8 bits per real valued parameter of the neural controllers
- Generational evolutionary algorithm
 - 100 individuals evolved for 100 generations
 - 20 best individuals are allowed to reproduce in each generation
 - Mutation (3% per bit) is applied to the offspring
- The perceptron is cloned and downloaded on each s-bot
- Fitness is evaluated looking at the swarm-bots performance
 - Each individual is evaluated with equal starting conditions

Swarm-bots: Coordinated motion

Fitness evaluation

The fitness F of a genotype is given by the distance covered by the group:

$F = \frac{\parallel X(t) - X(0) \parallel}{D}$ where *X*(*t*) is the coordinate vector of the center of mass at time *t*, and *D* is the maximum distance

- that can be covered in 150 simulation cycles
- Fitness is evaluated 5 times, starting from different random initializations
- The resulting average is assigned to the genotype

Swarm-bots: Coordinated motion

Results

Post-evaluation

Replication	Performance
1	0.87888
2	0.83959
3	0.88338
4	0.71567
5	0.79573
6	0.75209
7	0.83425
8	0.85848
9	0.87222
10	0.76111

Swarm-bots: Coordinated motion Porting to real s-bots

21

Swarm-bots: Coordinated motion Porting to real s-bots

22

Swarm-bots: Coordinated motion Porting to real s-bots

scalability

23

flexibility and scalability

Swarm-bots

Self-assembly

Algorithm I - The assembly module 1 activate colour ring in blue $2 \, \mathrm{do}$ $(N_1, N_2) \leftarrow \text{featureExtraction(camera)}$ \mathcal{S} $(N_3, N_4) \leftarrow \text{sensorReadings(proximity)}$ 4 $(N_5, N_6, N_7) \leftarrow \text{neuralNetwork}(N_1, N_2, N_3, N_4)$ 5 6 if $(N_7 > 0.5) \wedge (\text{grasping requirements fulfilled})$ γ then 8 grasp gif (successfully connected) 10 then 11 activate colour ring in red 12activate transport module 13else 14 open gripper 15 \mathbf{fi} 16fi 17 apply (N_5, N_6) to tracks 18 19 while (timeout not reached)

Swarm-bots: Self-assembly

25

Six s-bots and a prey

Swarm-bots: Self-assembly

Different types of terrain

brown rough terrain

Swarm-bots: Self-assembly

Six s-bots and a prey

flexibility

28

flexibility

scalability

Swarm-bots

29

Cooperative transport

- Swarm-bots composed of 2 to 6 s-bots
- Different types of terrains
- Different weights of the transported object
- Failure during transport
 - One s-bot is blind. Comparisons with:
 - Blind s-bot controlled by learned neural net
 - Blind s-bot replaced by non-blind s-bot
 - Blind s-bot removed
- Failure during transport
 - One s-bot is not operational
- Integration with self-assembly

Swarm-bots: Cooperative transport

30

Self-assembly and transport

Swarm-bots: Path formation

40

Path formation and retrieval

Swarm-bots: Path formation

41

Path formation and retrieval

- Functional self-assembly
- Morphology formation
- Swarm-level fault detection

43

Functional self-assembly

ΔΔ

Functional self-assembly

S-bots can pass a low hill

45

Functional self-assembly

A single *s-bot* cannot pass a high hill

46

Functional self-assembly

A swarm-bot composed of 3 s-bots can

47

Functional self-assembly

Swarm-bots: Ongoing work Adaptive rotation

48

Swarm-bots: Ongoing work Morphology control

49

Swarm level fault detection inspired by fireflies behavior

- Each robot is given a heartbeat (i.e., robots flash periodically)
- A robot can stop flashing
 - either because it is broken
 - or as a way to signal other robots that it is faulty (it can realize its faultiness using some endogenous fault detection mechanism)
- When a robot stops flashing, other robots consider it as faulty

Firefly inspired fault detection in a swarm of robots

Synchronization and Fault Detection in Autonomous Robots

Anders Lyhne Christensen Rehan O'Grady Marco Dorigo

Swarm-bots

Swarm-bot partners

- More than 20 people for a duration of 42 months
- 2 Millions Euros funding
- Four labs involved:
 - IRIDIA-ULB (Belgium: Dorigo and Deneubourg):
 - Coordinator
 - Main expertise: swarm intelligence
 - EPFL (Switzerland: Floreano & Mondada):
 - Main expertise: hardware and evolutionary robotics (Khepera people)
 - IDSIA (Switzerland: Gambardella):
 - Main expertise: simulation
 - CNR (Italy: Nolfi):
 - Main expertise: evolutionary robotics
- One subcontractor:
 - METU, Ankara (Turkey: Sahin)
 - Collaborated to the development of a parallel environment for simulations

New work

54

Swarmanoid

Swarmanoid is a new project:

- Started on October 1st, 2006
- Is funded with 2.5 Millions EUR

(European Union – Future and Emerging Technologies program)

Has the same partners as Swarm-bots

New work

55

Swarmanoid

- A swarmanoid is composed of:
 - Eye-bots
 - Hand-bots
 - Foot-bots
- Goal: build heterogeneous swarms that act in 3D space

Swarm intelligence

Swarm Intelligence (since 2007)

- Swarm Intelligence publishes four issues per year
- Editor-in-Chief: Marco Dorigo
- Publisher: Springer

www.swarmanoid.org

62