Abstract: |
Prevalent approaches to motion synthesis for complex robots offer either the ability to build up knowledge
of feasible actions through exploration, or the ability to react to a changing environment, but not both. This
work proposes a simple integration of roadmap planning with reflexive collision response, which allows the
roadmap representation to be transformed into a Markov Decision Process. Consequently, roadmap planning
is extended to changing environments, and the adaptation of the map can be phrased as a reinforcement learning
problem. An implementation of the reflexive collision response is provided, such that the reinforcement
learning problem can be studied in an applied setting. The feasibility of the software is analyzed in terms of
runtime performance, and its functionality is demonstrated on the iCub humanoid robot. |